7. Mensuration

1 mark Questions

1. The curved surface area of a right circular cone of height 15 cm and base diameter 16 cm is
(A) $60 \pi \mathrm{~cm}^{2}$
(B) $68 \pi \mathrm{~cm}^{2}$
(C) $120 \pi \mathrm{~cm}^{2}$
(D) $136 \pi \mathrm{~cm}^{2}$
2. If two solid hemispheres of same base radius r units are joined together along their bases, then curved surface area of this new solid is

MAY-22
(A) $4 \pi r^{2}$ sq. units
(B) $6 \pi r^{2}$ sq. units
(C) $3 \pi r^{2}$ sq. units
(D) $8 \pi r^{2}$ sq. units
3. The height of a right circular cone whose radius is 5 cm and slant height is 13 cm will be
(A) 12 cm
(B) 10 cm
(C) 13 cm
(D) 5 cm

SEP-21
4. If the radius of the base of a right circular cylinder is halved keeping the same height, then the ratio of the volume of the cylinder thus obtained to the volume of original cylinder is JUL-22
(A) $1: 2$
(B) $1: 4$
(C) $1: 6$
(D) $1: 8$
5. The total surface area of a cylinder whose radius is $\frac{1}{3}$ of its height is

PTA-1
(A) $\frac{9 \pi h^{2}}{8}$ sq. units
(B) $24 \pi h^{2}$ sq. units
(C) $\frac{8 \pi h^{2}}{9}$ sq. units
(D) $\frac{56 \pi h^{2}}{9}$ sq. units
6. In a hollow cylinder, the sum of the external and internal radii is 14 cm and the width is 4 cm . If its height is 20 cm , the volume of the material in it is

PTA-4
(A) $5600 \pi \mathrm{~cm}^{3}$
(B) $1120 \pi \mathrm{~cm}^{3}$
(C) $56 \pi \mathrm{~cm}^{3}$
(D) $3600 \pi \mathrm{~cm}^{3}$
7. If the radius of the base of a cone is tripled and the height is doubled then the volume is
(A) made 6 times
(B) made 18 times
(C) made 12 times
(D) unchanged
8. The total surface area of a hemi-sphere is how much times the square of its radius.
(A) π
(B) 4π
(C) 3π
(D) 2π
PTA-3, SEP-21, JUL-22
9. A solid sphere of radius $x \mathrm{~cm}$ is melted and cast into a shape of a solid cone of same radius. The height of the cone is
(A) $3 x \mathrm{~cm}$
(B) $x \mathrm{~cm}$
(C) $4 x \mathrm{~cm}$
(D) $2 x \mathrm{~cm}$
10. A frustum of a right circular cone is of height 16 cm with radii of its ends as 8 cm and 20 cm . Then, the volume of the frustum is
(A) $3328 \pi \mathrm{~cm}^{3}$
(B) $3228 \pi \mathrm{~cm}^{3}$
(C) $3240 \pi \mathrm{~cm}^{3}$
(D) $3340 \pi \mathrm{~cm}^{3}$
11. A shuttle cock used for playing badminton has the shape of the combination of
(A) a cylinder and a sphere
(B) a hemisphere and a cone
(C) a sphere and a cone
(D) frustum of a cone and a hemisphere
12. A spherical ball of radius r_{1} units is melted to make 8 new identical balls each of radius r_{2} units. Then $r_{1}: r_{2}$ is

PTA-6, SEP-20
(A) 2:1
(B) $1: 2$
(C) $4: 1$
(D) $1: 4$
13. The volume (in cm^{3}) of the greatest sphere that ca be cut off from a cylindrical log of wood of base radius 1 cm and height 5 cm is
(A) $\frac{4}{3} \pi$
(B) $\frac{10}{3} \pi$
(C) 5π
(D) $\frac{20}{3} \pi$
14. The height and radius of the cone of which the frustum is a part are h_{1} units and r_{1} units respectively. Height of the frustum is h_{2} units and radius of the smaller base is r_{2} units. If $h_{2}: h_{1}=1: 2$ then $r_{2}: r_{1}$ is

PTA-2
(A) $1: 3$
(B) $1: 2$
(C) $2: 1$
(D) $3: 1$
15. The ratio of the volumes of a cylinder, a cone and a sphere, if each has the same diameter and same height is

PTA-5
(A) $1: 2: 3$
(B) $2: 1: 3$
(C) $1: 3: 2$
(D) $3: 1: 2$

2 mark Questions

1. The radius and height of a cylinder in the ratio $5: 7$ and its curved surface area is $5500 \mathrm{sq} . \mathrm{cm}$ Find its radius and height.
$\frac{\text { Radius }}{\text { Height }}=\frac{r}{h}=\frac{5}{7} \Rightarrow r=\frac{5 h}{7}$
CSA of the cylinder $=2 \pi r h=5500$

$$
\begin{aligned}
2 \times \frac{22}{7} \times \frac{5 h}{7} \times h & =5500 \\
h^{2} & =\frac{5500 \times 7 \times 7}{2 \times 22 \times 5} \\
2 & =5 \times 5 \times 7 \times 7 \\
h & =35 \mathrm{~cm}
\end{aligned}
$$

Substitute $\mathrm{h}=35$ in (1), $r=\frac{5(35)}{7} \Rightarrow r=25 \mathrm{~cm}$.

$$
r=25 \mathrm{~cm}, h=35 \mathrm{~cm}
$$

2. The ratio of the radii of two right circular cones of same height is $1: 3$. Find the ratio of their curved surface area when the height of each cone is 3 times the radius of the smaller cone.
Smaller cone:
$r_{1} \rightarrow r$
$h_{1} \rightarrow 3 r$
$l_{1}=\sqrt{(3 r)^{2}+r^{2}}=\sqrt{10 r^{2}}=r \sqrt{10}$
CSA of small cone : CSA of large cone

$$
\pi r_{1} l_{1}: \pi r_{2} l_{2}
$$

$r \times r \sqrt{10}: 3 r \times 3 r \sqrt{2}$

$$
\sqrt{5} \sqrt{2}: 9 \sqrt{2}
$$

$$
\sqrt{5}: 9
$$

Ratio of the CSA is $\sqrt{5}: 9$
3. A cylindrical glass with diameter 20 cm has water to a height of 9 cm . A small cylindrical metal of radius 5 cm and height 4 cm is immersed it completely. Calculate the raise of the water in the glass?

Volume of water raised in cylindrical glass

> = Volume of cylindrical metal immersed

$$
\pi R^{2} H=\pi r^{2} h
$$

$$
\pi \times 10 \times 10 \times h=\pi \times 5 \times 5 \times 4
$$

$$
\begin{aligned}
h & =\frac{5 \times 5 \times 4}{10 \times 10} \\
& =1
\end{aligned}
$$

The raise of the water in the glass $=\mathbf{1} \mathbf{~ c m}$
4. The volumes of two cones of same base radius are $3600 \mathrm{~cm}^{3}$ and $5040 \mathrm{~cm}^{3}$. Find the ratio of heights.

PTA-4, MAY-22
Volume of cone $=\frac{1}{3} \pi r^{2} h$
Volume of cone 1 : Volume of cone $2=3600: 5040$

$$
\begin{aligned}
\frac{1}{3} \pi r^{2} \times h_{1}: \frac{1}{3} \pi r^{2} \times h_{2} & =180: 252 \\
h_{1}: h_{2} & =45: 63 \\
h_{1}: h_{2} & =5: 7
\end{aligned}
$$

5. A solid sphere and a solid hemisphere have equal total surface area. Prove that the ratio of their volume is $3 \sqrt{3}: 4$.

TSA of sphere $=$ TSA of hemisphere

$$
\not \approx \pi r_{1}^{2}=\nexists \pi r_{2}^{2} \Rightarrow \frac{r_{1}^{2}}{r_{2}^{2}}=\frac{3}{4} \Rightarrow \frac{r_{1}}{r_{2}}=\frac{\sqrt{3}}{2}
$$

$$
\begin{aligned}
\frac{\text { volume of sphere }}{\text { volume of hemisphere }} & =\frac{\frac{4}{3} \pi r_{1}^{3}}{\frac{2}{3} \pi r_{2}^{3}} \\
& =2\left(\frac{r_{1}}{r_{2}}\right)^{3} \\
& =2\left(\frac{\sqrt{3}}{2}\right)^{3} \\
& =\frac{2 \times 3 \sqrt{3}}{8} \\
& =\frac{3 \sqrt{3}}{4}
\end{aligned}
$$

\therefore Ratio of the volume $3 \sqrt{3}: 4$
6. Find the number of coins, 1.5 cm in diameter and 2 mm thick, to be melted to form a right circular cylinder of height 10 cm and diameter 4.5 cm .
Number of coins $=\frac{\text { volume of cylinder }\left(\pi r^{2} h\right)}{\text { volume of a coin }\left(\pi r^{2} h\right)}$

$$
=\frac{\pi \times 45 \times 45 \times 10 \times 10 \times 2 \times 10 \times 2 \times 10}{2 \times 10 \times 2 \times 10 \times \pi \times 15 \times 15 \times 2}
$$

Number of coins to be melted $=450$ coins

5 mark Questions

1. A container open at the top is in the form of a frustum of a cone of height 16 cm with radii of its lower and upper ends are 8 cm and 20 cm respectively. Find the cost of milk which can completely fill a container at the rate of $₹ 40$ per litre.

$$
\begin{aligned}
& \text { Volume of frustum }=\frac{1}{3} \pi h\left(R^{2}+r^{2}+R r\right) \\
& \qquad \begin{array}{l}
=\frac{1}{3} \times \frac{22}{7} \times 16\left(20^{2}+8^{2}+(20 \times 8)\right) \\
=\frac{1}{3} \times \frac{22}{7} \times 16 \times 624 \\
=\frac{73216}{7} \\
=10459.4 \mathrm{~cm}^{3}
\end{array}
\end{aligned}
$$

Volume of frustum $=10.4594$ litres

$$
\text { Required cost }=10.4594 \times 40
$$

$$
=₹ 418.376
$$

Cost of the milk which can completely fill the container \cong ₹ $\mathbf{4 1 8 . 3 8}$
2. Nathan, an engineering student was asked to make a model shaped like a cylinder with two cones attached at its two ends. The diameter of the model is $\mathbf{3} \mathbf{~ c m}$ and its length is $\mathbf{1 2 ~ c m}$. If each cone has a height of $\mathbf{2 c m}$, find the volume of the model that Nathan made.

MAY-22
Volume of the model $=$ Volume of cylinder + Volume of cone $\times 2$

$$
\begin{aligned}
& =\pi r^{2} h_{1}+\frac{1}{3} \pi r^{2} h_{2} \times 2 \\
& =\pi r^{2}\left[h_{1}+\frac{2}{3} h_{2}\right] \\
& =\frac{22}{7} \times \frac{3}{2} \times \frac{3}{2} \times\left[8+\frac{2}{3}(2)\right] \\
& =\frac{22}{7} \times \frac{3}{2} \times \frac{3}{2} \times \frac{28}{3}
\end{aligned}
$$

Volume of the model $=\mathbf{6 6} \mathbf{~ c m}^{\mathbf{3}}$

1. Mensuration - Important Questions B
2. A metallic sheet in the form of a sector of a circle of radius 21 cm has central angle of 216°. The sector is made into a cone by bringing the bounding radii together. Find the volume of the cone formed.

PTA-2
Arc length $L=\frac{2 \pi R}{360} \times 216$

$$
L=\frac{2 \pi \times 21 \times 3}{5}
$$

Circum of base of the cone $=$ Arc length
i.e, $2 \pi r=\frac{2 \pi \times 21 \times 3}{5}$

$$
=\frac{63}{5}
$$

$$
r=12.6 \mathrm{~cm}
$$

$$
h=\sqrt{l^{2}-r^{2}}
$$

$$
=\sqrt{21^{2}-12.6^{2}}
$$

$$
=\sqrt{441-158.76}
$$

$$
=\sqrt{282.24}
$$

$$
h=16.8 \mathrm{~cm}
$$

Volume of cone $=\frac{1}{3} \pi r^{2} h$

$$
\begin{aligned}
& =\frac{1}{3} \times \frac{22}{7} \times 12.6 \times 12.6 \times 16.8 \\
& =2794.176 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of the cone formed $=2794.176 \mathrm{~cm}^{3}$

